Raquel Alhama wins best student poster award at ICCM

Computational linguist Raquel Alhama (ILLC) wins best student poster award at the International Conference on Cognitive Modeling (ICCM’15) with her work on:

How should we evaluate models of segmentation in artificial language learning?

(with Remko Scha and Jelle Zuidema).

One of the challenges that infants have to solve when learning their native language is to identify the words in a continuous speech stream. Some of the experiments in Artificial Grammar Learning (Saffran, Newport, and Aslin (1996); Saffran, Aslin, and Newport (1996); Aslin, Saffran, and Newport (1998) and many more) investigate this ability. In these ex- periments, subjects are exposed to an artificial speech stream that contains certain regularities. Adult participants are typically tested with 2-alternative Forced Choice Tests (2AFC) in which they have to choose between a word and another sequence (typically a partword, a sequence resulting from misplacing boundaries).

One of the key findings of AGL is that both infants and adults are sensitive to transitional probabilities and other statistical cues, and can use them to segment the input stream. Several computational models have been proposed to explain such findings. We will review how these models are evaluated and argue that we need a different type of experimental data for model evaluation than is typically used and reported. We present some preliminary results and a model consistent with the data.

(Extended abstract here: http://www.iccm2015.org/proceedings/papers/0040/paper0040.pdf)